Network Measurement

Changhoon Kim

chang@barefootnetworks.com

CS344, Spring 2019

*Courtesy Jennifer Rexford at Princeton University for several slides

“If you can’t measure it, you can’t improve it”
-- Peter Drucker

“There are two possible outcomes. If the result confirms the
hypothesis, then you’ve made a measurement; if the result

contradicts the hypothesis, you’ve made a discovery.”
-- Enrico Fermi

Why Measure The Network?

* Network operation
* Billing customers
* Checking up on quality of service (QoS)
* Detecting, diagnosing, and fixing problems
* Planning outlay of new equipment and infra

e Scientific discovery
* Characterizing traffic, topology, performance
e Understanding performance and dynamics of new ideas

Taxonomy of Network Measurement — Take A

end-to-end
performance

t0p0_|09Y; _ packet and flow
configuration, measurements,
routing link statistics

state traffic

Taxonomy of Network Measurement — Take B

Control Plane Data Plane

Topology, End-to-end performance,
Configuration, Link statistics,
Routing Packets & flows and their
attributes

Active E.g., Route injection E.g., Ping, Traceroute, iPerf

E.g., Routing table dumps, E.g., mirroring, NetFlow, sFlow,
Passive link-state monitoring, heavy-hitter detection, tcpdump,
BGP update monitoring TCP e-stats

Packet Measurement

Packet Monitoring

* Definition
» Passively collecting IP packets on one or more links
* Recording IP, TCP/UDP, or application-layer traces

* Scope
* Fine-grain information about user and application behavior
* Passively monitoring the network infrastructure
e Characterizing traffic and diagnosing problems

Monitoring a Link

Shared media (wireless)

Multicast switch

Switch

Monitor

Monitor inserted in a link

- o

Monitoring a Link — cont’d

Splitting a point-to-point link

ta
Switch A Switch B

Mirroring-capable Switch

Switch

Monitor

Line card that does packet sampling

—m

Selecting the Traffic

* Filter to focus on a subset of the packets
* |P addresses/prefixes (e.g., to/from specific sites)
* Protocol (e.g., TCP, UDP, or ICMP)
e Port numbers (e.g., HTTP, DNS, BGP, Napster)

* Collect first n bytes of packet (snap length)
 Medium access control header (if present)
 |P header (typically 20 or 36 bytes)

* |IP+UDP header (typically 28 or 44 bytes)
* |IP+TCP header (typically 40 or 56 bytes)
* Application-layer message (entire packet)

Analysis of IP Header Traces

e Source/destination addresses
* Identity of popular servers & heavy apps/users

* Distribution of packet delay through the router
* |dentification of typical delays and anomalies

e Distribution of packet sizes
 Workload models for routers

* Burstiness of the traffic on the link over time
* Provisioning rules for allocating link capacity and queue sizes

* Throughput between pairs of src/dest addresses
* Detection and diagnosis of performance problems

TCP Header Analysis

* Source and destination port numbers
* Popular applications; parallel connections

» Sequence/ACK numbers and packet timestamps
* Out-of-order/lost packets; throughput and delay

* Number of packets/bytes per connection
* RPC/message transfer sizes; frequency of bulk transfers

* SYN flags from client machines
* Unsuccessful requests; denial-of-service attacks

* FIN/RST flags from client machines
* Frequency of Web transfers aborted by clients; application behavior

Packet Contents

* Application-layer header
 HTTP request and response headers
e SMTP commands and replies
* DNS queries and responses; OSPF/BGP messages

* Application-layer body

« HTTP resources (or checksums of the contents)
 RPC (e.g., Thrift) messages, key-value caching operations, pub-sub messages

* This is getting harder due to end-to-end encryption

Flow Measurement

IP Flows

\ NV

flow 1 flow 2 flow 3 flow 4

 Set of packets that “belong together”
* Source/destination IP addresses and port numbers
* Same protocol, ToS bits, ...
e Same input/output interfaces at a router (if known)

* Packets that are “close” together in time
* Maximum spacing between packets (e.g., 30 sec)
e E.g.: flows 2 and 4 are different flows due to time

Flow Abstraction

* Not exactly the same as a “session” or “message”
* Sequence of related packets may be multiple flows
* Related packets may not follow the same links
* “Message” or “session” is hard to measure from inside network

* Motivation for this abstraction
* As close to a meaningful application-level traffic unit as possible from inside
* Router optimization for forwarding/access-control
* ... might as well throw in a few counters

Traffic Statistics (e.g., Netflow)

* Packet header info

* Source and destination addresses and port #s
e Other IP & TCP/UDP header fields (protocol, ToS)

e Aggregate traffic information
 Start and finish time (time of first & last packet)
» Total # of bytes and number of packets in the flow
e TCP flags (e.g., logical OR over sequence of packets)

SYN ACK ACK FIN 4 packets
Il B I . 1436 bytes
SYN, ACK, & FIN

Recording Routing Information

* Input and output interfaces
* Input interface is where packets entered the router
e Output interface is “next hop” in forwarding table

e Source and destination IP prefix (mask length)
* Longest prefix match on src and dest IP addresses

Forwarding table

!

Line card Line card (s 2

<«— BGP table

Control Plane

Switching
Fabric

Line card Line card

Line card Line card

Packet vs. Flow Measurement

 Basic statistics (available from both techniques)
* Traffic mix by IP addresses, port numbers, protocol
* Average packet size

e Traffic over time
* Both: traffic volumes on medium-to-large time scale
e Packet: burstiness of the traffic on a small time scale

* Statistics per L4 connection
* Both: volume of traffic transferred over the link
* Packet: frequency of lost or out-of-order packets

Collecting Flow Measurements

Route CPU that generates flow records

Line card that generates flow records

...may degrade forwarding performance

S

\

...more efficient to support

‘ measurement in each line card
> Router A

Packet monitor that generates flow records

Mechanics: Flow Cache

* Maintain a cache of active flows
 Storage of byte/packet counts, timestamps, etc.

 Compute a key per incoming packet
* Concatenation of source, destination, port #s, etc.

* Index into the flow cache based on the key
e Creation or updating of an entry in the flow cache

key

bytes, # packets, start, finish

key

bytes, # packets, start, finish

Mechanics: Evicting Cache Entries

* Flow timeout
* Remove flows not receiving a packet recently
* Periodic sequencing to time out flows
 New packet triggers the creation of a new flow

* Cache replacement
 Remove flow(s) when the flow cache is full
* Evict existing flow(s) upon creating a cache entry
* Apply eviction policy (LRU, random flow, etc.)

* Long-lived flows
 Remove flow(s) persisting a long time (e.g., 30 min)

Measurement Overhead

* Per-packet overhead
* Computing the key and indexing flow cache
* More work when the average packet size is small
* May not be able to keep up with the link speed

* Per-flow overhead
* Creation and eviction of entry in the flow cache
e Volume of measurement data (# of flow records)
* Larger # of flows when # of packets per flow is small
* May overwhelm system collecting/analyzing data

Sampling: Packet Sampling

* Packet sampling before flow creation
e 1-out-of-m sampling of individual packets
* Create of flow records over the sampled packets

* Reducing overhead
* Avoid per-packet overhead on (m-1)/m packets
* Avoid creating records for many small flows

B BN B [N B > time

not sampled

I?F_ii____”___ﬁm%mtlil ii*——'

two flows

Advanced Topics and
Recent Trends

More on Sampling ...

e Sample all packets in a random subset of flows without maintaining
any flow state in a device?

* Apply hashing to 5 tuple of packets and sample those with certain hash results

e Sample packets or flows consistently across multiple hops?

* Apply hashing only to invariant header fields
(e.g., 5 tuple + IP identification, 5 tuple + TCP flag)

* Use the same hash function and selection rule at every hop

e Sample just the first packet of each flow?
* Use Bloom filter

Challenges of Flow Measurement Today

* Very high speed
* 12.8Tbps or 6Bpps per switching chip (ASIC)

* Even with four parallel pipelines (cores), one pipeline needs to handle 1.5Bpps;
process one packet every 670 psecs!

* DRAM read or write takes tens of nsecs; SRAM is the only viable option

* Limited amount of on-chip SRAM
* Up to a few tens of MBs, shared with tables for various other features

* Hence, the followings have become very hard, motivating innovations
* Flow cache —i.e., an exact match table with line-rate entry insertion
* Alarge number of counters (e.g., per-flow counters)

Advanced Flow Measurement: Marple [Sigcomm’17]

* Real flow cache processing un-sampled traffic is too expensive;
can we use a cheaper data structure?

* A small hash table indexed by flow hash
* Collisions will happen frequently

* Evict an entry upon collision
* Evicted flow’s information is delivered to local or remote monitor
e Data-plane-based eviction is feasible, trading bandwidth for monitoring

* Partial flow statistics can be safely merged in many cases

* Merge-able statistics include addition, max, min, set union, set intersection,
exponentially-weighted moving average (e.g., rates), etc.

* “Linear-in-state” statistics are provably merge-able

Advanced Flow Measurement: FlowRadar [NSDI’16]

* Again, let’s just use a small hash table indexed by flow hash

* Embrace collisions; keep encoding values of colliding flows
» Keep three hash tables (for flow ID, flow size, # of flows)
Produce n hashes for each packet and update n locations in each hash table
Periodically dump the hash tables to the controller
Controller decodes the hash-table contents in a “zig-zag” fashion
Decoding the hash-table contents at the network level works even better

— AR

nculqzo| nfi |sdc|mzd zfs |xfu| <@ Update upon new flow
24

60|25|14|79|10947 | 73| &= Update every packet

Flow ID (xor upon collision) |[sdf|fid [xyz|yib | diz [ncy[pfw|aco| sci | ciu
VU

Flow size (sum upon collision) |85[23| 5 |38[113|27| 6 |204(38 |45

i ok G;E “

of flows (sum upon collision) |52 (1|4 |10{3|1|16|8 |3 612|127 |6|4]|7| == Update upon new flow

Advanced ldeas for Keeping Counters

* Shallow counters on SRAM, backed by deep counters on DRAM

* Occasionally export counter values from SRAM to DRAM using clever
techniques

* Worth reading
* CMA [IEEE Micro’02]
* LR(t) [Sigmetrics’03]
* Counter Braids [Sigmetrics’08]

https://web.stanford.edu/~balaji/papers/02maintainingstatistics.pdf
https://dl.acm.org/citation.cfm?id=781060
https://web.stanford.edu/~montanar/RESEARCH/FILEPAP/sigmetrics08_final.pdf

Getting Approximate Statistics

* Precise statistics are often too expensive and hard to get by;
approximate answers are acceptable for many questions, such as ...
 “How many unique flows are there?”
* “Which are the top-N flows or elephant flows ?”
* “Which are top-N spreaders?”
 “How varied are certain header fields?”
* “What does the flow-size distribution look like ?”

e Sketch

* A compact, fixed-size data structure that can summarize traffic statistics
while bounding an error margin

Example Sketches

e CountMin sketch for elephant-flow detection

Flow1 [3 packets] ash(Flc =

* Hyper-loglog sketch for approximate cardinality counting
* “To observe a very rare event, you must have had a lot of samples”

Flow2 [5 packets] ash(Flc

\ 4

5

10

12

4

)

Flow3 [7 packets] ash(Flow3

Hash 5 tuple of each packet

Track the max number of leading zeros observed in the hash results
A larger number of leading zeros means “statistically” more flows

E.g., 10 leading zeros ~= 21! flows

Hash Table

Size of flowl = min(10, 8, 3) = 3, Size of flow2 = min(5, 8, 12) =5, Size of flow3 = min(10, 12, 7) =7

Data-plane Telemetry

“I visited Switch 1 @780ns,
“Which path did my packet take?” Switch 9 @1.3us, Switch 12 @2.4us”

“In Switch 1, | followed rules 75 and 250.
In Switch 9, | followed rules 3 and 80. ”

75 192.168.0/24 “Which rules did my packet follow?”

“How long did my packet queue at each switch?” “Delay: 100ns, 200ns, 19740ns”

Queue

“Who did my packet share the queue with?”

Time

@ “How long did my packet queue at each switch?” “Delay: 100ns, 200ns, 19740ns”

Aggressor flow!

Queue

@ “Who did my packet share the queue with?”

The network should answer these questions

€ “Which path did my packet take?”
9 “Which rules did my packet follow?”

9 “How long did it queue at each switch?”
9 “Who did it share the queues with?”

Programmable data planes can answer all four questions
at full line rate, without impacting performance!

Flow Reporting: INT End-to-end Mode

* Leverages In-Band Network Telemetry (INT)
https://github.com/p4lang/p4-applications/blob/master/docs/INT vO 5.pdf

INT Transit
Adds metadata based on INT
instructions
Add: SwitchID, Arrival Time, / INT Sink

Removes metadata

/ Original Packet

L-L >, [Change Detector]]

“Monitor every packet,

but report only what matters!”
- Generate reports upon
* Flow initiation & termination

INT Source * Path or queueing latency changes - =
Instruments packets for Teleme * Special field values K %)
- Change detectors are reset periodically

(e.g., once every sec) Log, Analyze Visualize
Replay
38

https://github.com/p4lang/p4-applications/blob/master/docs/INT_v0_5.pdf

Flow Reporting: INT Hop-by-hop Mode

[Change Detector]

- Reset much less frequently
(e.g., once every 10 sec)

[Change Detector] , [Change Detector]

- Reset frequently ‘ - Reset frequently
(e.g., once every sec) (e.g., once every sec)

‘ SwitchID, Arrival Time, \

Replay

39

Flexibility matters

Programmable
Telemetry

P4 code snippet: switch ID, ingress and egress timestamp

40

Change Detector

* Inspect every packet, and report only relevant ones

» Keep the hash of flow into (ID, path, latency) in the hash table
e Report when at least one of the cell values differ

* Very low false negatives, reasonably low false positives when # of flows is
smaller than the soft capacity of change detector

Flowl’s ID, new

path & latency info -

Flow1l === Hash(Flow1)

olo|qy|O['z|Oo|lO|O;z[O0|O|O|O|O|O|"z|0 |4v| Change Detector

Flow2 =——Hash(Flow2)

Flow2’s ID, path & oz
latency info ¢

|

How does a congested queue behave?

Queueing Latency (nsec)

1.5e+06

le+06

0.5e+06

O]

s

|

—— Latency change detection sensitivity = 256us

|

|

—

|

1.5e+09

2e+09

2.5¢+09
Time (nsec)

3e+09

3.5e+09

4e+09

How does a congested queue behave?

Queueing Latency (nsec)

1.8e+06

1.6e+06

1.4e+06, §

1.2e+06:

1.0e+06

-

. 14
* 18

!
| i
i P
i
j -------------- Latency change detection sensitivity = 16us
—— Latency change detection sensitivity = 256us
1 I l | l I l I
9.8¢+09 le+10 1.02e+10 1.04e+10 1.06e+10 1.08e+10 1.1e+10 1.12e+10

Time (nsec)

Results with more connections

25 connections (still somewhat meta-stable) 50 connections (stable)

T

111111

ooooooo

Time(ns)

Conclusions

* Measurement is crucial to network operations
* Measure, model, control
* Detect, diagnose, fix

Network measurement is challenging
 Very high speed vs. limited h/w technology
* Large volume of measurement data with multi dimensions

* Programmable data planes open up exciting new possibilities
e “Data-plane Telemetry” for ground-truth information

e Great way to understand the network, applications, users
* Popular applications, traffic characteristics

