
CS344, Stanford University

CS344 – Lecture 3
DEVELOPMENT TOOLS

P4.org BMv2

Mininet

CS344, Stanford University

Announcements
• Office Hours:

◦ Tuesdays & Thursdays: 3 – 5pm, Gates 315
• Lab Access
• Tutorial Exercises (Due Thursday – 4/11 11:59pm)
• No Lecture on Wednesday

◦ Tutorial exercises
◦ Interoperability planning
◦ Router project

• Guest Lecture on Monday

CS344, Stanford University

Development Tools
SimpleSumeSwitch

NetFPGA SUME

Mininet

P4.org BMv2

CS344, Stanford University

SimpleSumeSwitch Architecture Model for SUME Target

• P4 used to describe parser, match-action pipeline, and deparser
4

CS344, Stanford University

/* standard sume switch metadata */
struct sume_metadata_t {

bit<16> dma_q_size;
bit<16> nf3_q_size;
bit<16> nf2_q_size;
bit<16> nf1_q_size;
bit<16> nf0_q_size;
// send digest_data to CPU
bit<8> send_dig_to_cpu;
// ports are one-hot encoded
bit<8> dst_port;
bit<8> src_port;
// pkt len is measured in bytes
bit<16> pkt_len;

}

Standard Metadata in SimpleSumeSwitch Architecture

5

• src_port/dst_port – one-hot
encoded, easy to do multicast

• *_q_size – size of each output

queue, measured in terms of 32-

byte words, when packet starts

being processed by the P4 program

CS344, Stanford University

parser MyParser(packet_in packet,
out headers hdr,
out user_data_t user,
out digest_data_t digest,
inout sume_metadata_t smeta)

{

state start {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.type) {

0x800 : parse_ipv4;
default : accept;

}
}

state parse_ipv4 {
packet.extract(hdr.ipv4);
transition accept;

}

}

P4 Parsing

6

• Map packets into headers and
metadata

• State machine
• Three predefined states:
◦ start
◦ accept
◦ reject

• User defined states
• Loops are OK

CS344, Stanford University

control MyIngress(inout headers hdr,
inout user_data_t user,
inout digest_data_t digest,
inout sume_metadata_t smeta) {

action set_dst_port(bit<8> port) {
smeta.dst_port = port;

}

table forward {
key = { smeta.src_port : exact; }
actions = { set_dst_port; }
size = 1024;
default_action = set_dst_port(0);

}

apply {
if (hdr.ipv4.isValid()) {
forward.apply();

}
else {
smeta.dst_port = 0;

}
}

}

P4 Match-Action Processing

7

• Declare tables and actions
• Similar to C functions
• No loops
• Functionality specified by

code in apply statement
• Table entries populated by

control-plane

Key Action Name Action Data

1 set_dst_port 2

2 set_dst_port 1

forward table entries:

CS344, Stanford University

control MyDeparser(packet_out packet,
in headers hdr,
in user_data_t user,
inout digest_data_t digest,
inout sume_metadata_t smeta) {

apply {
// insert valid headers into packet
packet.emit(hdr.ethernet);
packet.emit(hdr.ipv4);

}
}

P4 Deparsing

8

•Assembles the headers back

into a well-formed packet

•Header is only emitted if it valid

CS344, Stanford University

// special SUME hash function
extern void sume_hash(in bit<64> data, out bit<8> result);

control MyIngress(inout headers hdr,
inout user_data_t user,
inout digest_data_t digest,
inout sume_metadata_t smeta) {

apply {
bit<8> flowID;
sume_hash(hdr.ip.src++hdr.ip.dst, flowID);
...

}
}

P4 Externs

9

• Black boxes for P4 programs

• Functionality is not described in
P4

• Used to perform device/vendor
specific functionality

• Can be stateless of stateful

• Can be accessed by the control-
plane

• Set of supported externs is
defined by architecture

CS344, Stanford University

Xilinx SDNet Compiler

• P4 to PX frontend
• Produces:
◦ JSON design info
◦ HDL module
◦ Verification environment

•Configuration:
◦ Throughput (1 – 400 Gbps)
◦ Latency
◦ Resources

10

FPGA ’19, February 24–26, 2019, Seaside, CA, USA S. Ibanez et al.

most — ways. As the networking community has converged on
using P4 as the standard language, Xilinx has embraced the change
and, in the �rst instance, added a P4 to PX translator to the SDNet
design environment. Figure 2 depicts the process of compiling P4
programs using this version of SDNet. The front end translator
maps P4 programs into corresponding PX programs and also pro-
duces a JSON �le with information about the design that is required
by the runtime control software. The PX program is passed, along
with con�guration parameters, into SDNet which then produces
an HDL module that implements the user’s P4 program. Relative to
hand-optimized RTL designs, the result produced by SDNet is gen-
erally within about 2x the logic and memory resource utilization.
Additionally, SDNet generated designs can be con�gured to process
packets at line rates between 1 and 400 Gb/s. SDNet also produces
a SystemVerilog simulation testbench, C drivers to con�gure the
PX tables, and an optional C++ model of the PX program to be used
for debugging purposes. Recognizing the momentum behind P4,
the next (2019) generation of SDNet provides a native P4 compiler,
without the intermediate step via PX. This provides substantial
improvements in packet processing pipeline latency, and in FPGA
resource use.

Figure 2: The Xilinx P4-SDNet compilation �ow. P4 pro-
grams are �rst translated into a PX program, which is then
compiled into a Verilogmodule using the SDNet�ow. SDNet
also produces a veri�cation environment.

4 NETFPGA OVERVIEW
The NetFPGA project is a teaching and research tool, designed to
allow packets to be processed at line-rate in programmable hard-
ware. The NetFPGA project consists of four elements: boards, tools
and reference designs, a community of developers, and contributed
projects. The NetFPGA hardware family consists of three gener-
ations of FPGA-based networking boards; the latest is the SUME
board [39] which has total I/O capacity of 100 Gb/s. All of the

NetFPGA boards are designed with a PCIe connector so that net-
working software running on a host machine is able to interact
with the FPGA accelerated packet processing logic. All of the code
and documentation is openly hosted on GitHub [22].

Figure 3 depicts a block diagram of the canonical NetFPGA ref-
erence design. A similar design is used for NICs, switches, and IPv4
routers. It consists of four 10G SFP+ input/output ports along with
one DMA interface for the CPU path. The NetFPGA data path con-
sists of three main components: Input Arbiter, Output Port Lookup,
and Output Queues. The Input Arbiter admits packets from the
ports into the data path, towards the Output Port Lookup Module,
where the main packet processing occurs and an output port is
selected. The Output Queues bu�er packets while they wait to be
sent to the outputs. The core data path uses a 256-bit wide bus and
runs at 200 MHz, fast enough to support an aggregate of 40 Gb/s
from all four SFP+ ports.

NetFPGA has been used in classrooms for about 15 years with
over 2,000 boards deployed. However, it has always required stu-
dents to program in Verilog or VHDL, placing it o� limits to many.
While there are many students interested in learning about net-
worked systems, relatively few have the necessary prerequisite
knowledge in both hardware design and networking. Similarly, net-
working researchers wishing to prototype their ideas in hardware
have needed to learn Verilog or VHDL.

To bridge this gap, the P4!NetFPGA work�ow was created,
with the goal of making it much easier for networking students
and researchers to process packets in hardware. By allowing stu-
dents to program NetFPGA using P4, instructors can give their
students hands-on experience working with real hardware, while
allowing them to focus on learning networking concepts rather
than the minutiae involved in FPGA design. Similarly, network-
ing researchers can rapidly prototype new systems without being
bogged down in hardware development.

Figure 3: A block diagram of the NetFPGA reference design.

5 P4!NETFPGAWORKFLOW OVERVIEW
P4 designs for the NetFPGA SUME board are based on the Simple-
SumeSwitch architecture, shown in Figure 4. The simple architec-
ture consists of a parser, a match-action pipeline, and a deparser, and
is ideal for new P4 developers to start experimenting with because,
unlike the standard P4 Portable Switch Architecture (PSA) [29], it

4

CS344, Stanford University

11

Overview

CS344, Stanford University

NetFPGA = Networked FPGA

• A line-rate, flexible, open networking platform for teaching and
research

12

CS344, Stanford University

NetFPGA-SUME

13

CS344, Stanford University

Xilinx Virtex 7 690T

• Optimized for high-
performance
applications

• 690K Logic Cells

• 52Mb RAM

• 3 PCIe Gen. 3
Hard cores

14

CS344, Stanford University

Memory Interfaces

•DRAM:
2 x DDR3 SoDIMM
1866MT/s, 4GB

• SRAM:
3 x 9MB QDRII+, 500MHz

15

CS344, Stanford University

Host Interface

• PCIe Gen. 3

• x8 (only)

•Hardcore IP

16

CS344, Stanford University

Front Panel Ports

• 4 SFP+ Cages
• Directly connected to

the FPGA
• Supports 10GBase-R

transceivers (default)
• Also Supports

1000Base-X
transceivers and direct
attach cables

17

CS344, Stanford University

Storage

• 128MB FLASH

• 2 x SATA connectors

• Micro-SD slot

• Enable standalone
operation

19

CS344, Stanford University

NetFPGA board

20

PC with NetFPGA

Networking
Software
running on a
standard PC

A hardware
accelerator built
with FPGA driving
1/10/ 100Gb/s
network links

FPGA

Memory

10GbE

10GbE

10GbE

10GbE

PCI-Express

CPU Memory

CS344, Stanford University

NetFPGA Reference Design

• Five stages
◦ Input port

◦ Input arbitration

◦ Forwarding decision and packet

modification

◦ Output queuing

◦ Output port

• 256-bit data bus

• 200 MHz

21

10GE
RxQ

10GE
RxQ

10GE
RxQ

10GE
RxQ DMA

Input Arbiter

Output Port
Lookup

Output Queues

10GE
Tx

10GE
Tx

10GE
Tx

10GE
Tx DMA

CS344, Stanford University

Full System Components

22

Software

PCIe Bus

NetFPGA

AXI Lite

user data path

Registers

nf0 nf1 nf2 nf3 ioctl

Ports

CPU
RxQ

CPU
TxQ

10GE
Tx

10GE
Rx

CS344, Stanford University

Interface Naming Conventions

23

AXI Lite

user data path

Registers

nf0 nf1 nf2 nf3 ioctl

Ports

CPU
RxQ

CPU
TxQ

10GE
Tx

10GE
Rx

src / dst port fields:
x-x-x-x-x-x-x-x

nf3 nf2 nf1 nf0

LSBMSB

CS344, Stanford University

24

Overview
NetFPGA

CS344, Stanford University

General Process for Programming a P4 Target

25

P4 Architecture
Model

P4 Compiler

Target-specific
configuration

binary
Data PlaneTables Extern

objectsLoad

Target

P4 Program

Control Plane

Add/remove
table entries

CPU port

Packet-in/outExtern
control

R
U

N
TI

M
E

P4àNetFPGA tools

SimpleSumeSwitch
Architecture NetFPGA SUME

CS344, Stanford University

P4àNetFPGA Compilation Overview

26

P4 Program

Xilinx SDNet Tools

SimpleSumeSwitch Architecture

NetFPGA Reference Design

10GE
RxQ

10GE
RxQ

10GE
RxQ

10GE
RxQ DMA

Input Arbiter

Output Port
Lookup

Output Queues

10GE
Tx

10GE
Tx

10GE
Tx

10GE
Tx DMA

SimpleSume
Switch

CS344, Stanford University

P4àNetFPGA Extern Function library

• HDL modules invoked within P4 programs
• Stateless – reinitialized for each packet
• Stateful – keep state between packets

• Cannot pipeline stateful operations

27

Stateful operation: x = x + 1

tmp pkt.tmp = x pkt.tmp ++ x = pkt.tmptmp
= 0

tmp
= 1

tmp tmp
= 0

tmp
= 1

x = 0

x should be 2,
not 1!

Slide Credit: Anirudh Sivaraman

x = 1
Need atomic

read-modify-write operations

CS344, Stanford University

P4àNetFPGA Extern Function library

28

•Stateful Atoms[1]

•Stateless Externs

•Add your own!

Atom Description

R/W Read or write state

RAW Read, add to, or overwrite state

PRAW Predicated version of RAW

ifElseRAW Two RAWs, one each for when predicate is true or false

Sub IfElseRAW with stateful subtraction capability

Atom Description
IP Checksum Given an IP header, compute IP checksum

LRC Longitudinal redundancy check, simple hash function

timestamp Generate timestamp (granularity of 5 ns)

[1] Sivaraman, et al. "Packet transactions" ACM SIGCOMM Conference, 2016.

CS344, Stanford University

Using Atom Externs in P4 – Resetting Counter

Packet processing pseudo code:

count[NUM_ENTRIES];

if (pkt.hdr.reset == 1):
count[pkt.hdr.index] = 0

else:
count[pkt.hdr.index]++

29

CS344, Stanford University

Using Atom Externs in P4 – Resetting Counter

30

#define REG_READ 0
#define REG_WRITE 1
#define REG_ADD 2
// count register
@Xilinx_MaxLatency(1)
@Xilinx_ControlWidth(3)
extern void count_reg_raw(

in bit<3> index, in bit<32> newVal,
in bit<32> incVal,in bit<8> opCode,
out bit<32> result);

bit<16> index = pkt.hdr.index;
bit<32> newVal; bit<32> incVal; bit<8> opCode;
if(pkt.hdr.reset == 1) {

newVal = 0;
incVal = 0; // not used
opCode = REG_WRITE;

} else {
newVal = 0; // not used
incVal = 1;
opCode = REG_ADD;

}

bit<32> result; // the new value stored in count reg
count_reg_raw(index, newVal, incVal, opCode, result);

u State can be accessed exactly 1 time
u Using RAW atom here

Instantiate extern

Set metadata for state access

Single state access!

CS344, Stanford University

Adding Custom Extern Functions

1. Implement Verilog extern module in
$SUME_SDNET/templates/externs/

2. Add entry to $SUME_SDNET/bin/extern_data.py

• No need to modify any existing code

• AXI Lite control interface

31

CS344, Stanford University

P4àNetFPGA Simulations

• Python Scapy based script to generate test packets and metadata

• Two stages of simulations:

◦ Testbench produced by SDNet compiler

◦ Full NetFPGA pipeline simulation

32

CS344, Stanford University

API & Interactive CLI Tool Generation

• Both Python API and C API

• Manipulate tables and externs in P4 pipeline
• Used to implement control-plane

• CLI tool
• Useful debugging feature
• Query various compile-time information
• Interact directly with tables and externs at run time

33

CS344, Stanford University

P4àNetFPGA Workflow

34

1.Write P4 program

2.Write externs

3.Write python gen_testdata.py script

4.Compile to Verilog / generate API & CLI tools

5.Run simulations

6.Build bitstream

7.Check implementation results

8.Test the hardware

All of your effort
will go here

pa
ss

fa
il

CS344, Stanford University

P4àNetFPGA Online Tutorials[1]

• Step-by-step guide

• Solutions available

• Three assignments:

◦ Switch as calculator

◦ TCP flow monitor

◦ In-band Network Telemetry (INT)

35

[1] https://github.com/NetFPGA/P4-NetFPGA-public/wiki/Tutorial-Assignments

https://github.com/NetFPGA/P4-NetFPGA-public/wiki/Tutorial-Assignments

CS344, Stanford University

P4àNetFPGA Community

• 150 different institutions
•Mailing list: cl-netfpga-sume-beta@lists.cam.ac.uk

36

mailto:cl-netfpga-sume-beta@lists.cam.ac.uk

CS344 Stanford

Debugging P4 Programs

• SDNet HDL simulation

• SDNet C++ simulation
◦ Verbose packet processing info

◦ Output PCAP file

• Full SUME HDL simulation

37

CS344 Stanford

Directory Structure of $SUME_FOLDER

38

P4-NetFPGA-live/

|

|- contrib-projects/

| |- sume-sdnet-switch/ à the main directory for P4 dev

|

|- lib/ à contains all of the SUME IP cores

|

|- tools/ à various NetFPGA scripts for test infra.

|

|- Makefile à builds all of the SUME IP cores

CS344 Stanford

Directory Structure of $SUME_SDNET

39

sume-sdnet-switch/

|

|- bin/ à scripts used to automate workflow

|

|- templates/ à templates for externs, wrapper module,

| CLI tools, new projects

|

|- projects/ à all of the P4 project directories

| |- switch_calc/

CS344 Stanford

Directory Structure of $P4_PROJECT_DIR

40

$P4_PROJECT_DIR/

|
|- src/ à P4 source files and commands.txt
|
|- testdata/ à scripts to generate testdata used for
| verifying functionality of P4 program
|
|- simple_sume_switch/ à main SUME project directory,
| top level HDL files and SUME sim scripts
|
|- sw/ à populated with API files and CLI tools and any
| user software for the project
|
|- nf_sume_sdnet_ip/ à SDNet output directory

CS344 Stanford

Assignment 1: Switch as a Calculator

41

CS344 Stanford

Switch as a Calculator

• Supported Operations
◦ ADD – add two operands
◦ SUBTRACT – subtract two operands
◦ ADD_REG – add operand to current value in the register
◦ SET_REG – overwrite the current value in the register
◦ LOOKUP – Lookup the given key in the table

42

header Calc_h {
bit<32> op1;
bit<8> opCode;
bit<32> op2;
bit<32> result;

}

CS344 Stanford

Switch as a Calculator

43

DST: MAC1
SRC: MAC2
Type: CALC_TYPE

Ethernet

Calc

Payload…

User PC NetFPGA SUME

op1: 1
opCode: ADD
op2: 2
result: 0

CS344 Stanford

Switch as a Calculator

44

DST: MAC1
SRC: MAC2
Type: CALC_TYPE

Ethernet

Calc

Payload…

op1: 1
opCode: ADD
op2: 2
result: 0 3X

User PC NetFPGA SUME

CS344 Stanford

Switch as a Calculator

45

DST: MAC2
SRC: MAC1
Type: CALC_TYPE

Ethernet

Calc

Payload…

op1: 1
opCode: ADD
op2: 2
result: 3

User PC NetFPGA SUME

CS344 Stanford

Switch Calc Operations

46

ADD

result

op1 op2

+

SUB

result: op1-op2

op1 op2

-

ADD_REG

result

op2 const[op1]

+

SET_REG

const[op1]

op2

LOOKUP

result:
val

key:
op1

key val

0 1

1 16

2 162

3 163

CS344 Stanford

P4.org BMv2 Mininet Emulation

47

CS344 Stanford

Virtual Machine

48

• Dependencies:
◦ Bmv2
◦ p4c
◦ Mininet

• Getting Set Up:
◦ Install Vagrant and VirtualBox
◦ $ git clone -b si/skt/SimpleSumeSwitch https://github.com/CS344-

Stanford/tutorials.git
◦ $ cd tutorials/vm
◦ $ vagrant up

CS344 Stanford

Behavioral Model v2

•C++ packet processing library for P4 programs

49

Mininet
(Network Emulator)

NS3
(Network Simulator)

Supported
Architectures

• V1Model
• SimpleSumeSwitch

• P4QueueDisc

CS344 Stanford

Behavioral Model v2

50

test.p4

test.json

si
m

pl
e_

su
m

e_
sw

itc
h

Program-independent
Control Server

Pipeline

Parser Deparser

Port Interface

L
o
g

D
e
b
u
g

p4c-bm2-sume

Packet
sniffer

Packet
generator

Linux Kernel
veth0..n

test.json

P4
Debugger

runtime_CLI
Program-independent

CLI and Client

CS344 Stanford

Mininet Topology

51

s1

h1
(10.0.1.1)

s2

h2
(10.0.2.2)nf0 nf1 nf0nf1

c1 c2

Thrift port
9090

Thrift port
9091dma dma

route add … route add …
table_add … table_add …

{
"hosts": {

"h1": {"ip": "10.0.1.1/24", "mac": "08:00:00:00:01:01",
"commands":["route add default gw 10.0.1.10 dev eth0"]},

"h2": {"ip": ”10.0.2.2/24", "mac": "08:00:00:00:02:02",
"commands":["route add default gw 10.0.2.20 dev eth0"]}

},
"switches": { "s1": {"cli_input": "s1-commands.txt"},

"s2": {"cli_input": "s2-commands.txt"} },
"links": [["h1", "s1-nf0"], ["s1-nf1", "s2-nf1"], ["h2", "s2-nf0"]]

}

CS344 Stanford

Working with Tables in runtime_CLI

52

RuntimeCmd: show_tables
m_filter [meta.meter_tag(exact, 32)]
m_table [ethernet.srcAddr(ternary, 48)]

RuntimeCmd: table_info m_table
m_table [ethernet.srcAddr(ternary, 48)]
**
_nop
[]m_action [meter_idx(32)]

RuntimeCmd: table_dump m_table
m_table:
0: aaaaaaaaaaaa &&& ffffffffffff => m_action - 0,
SUCCESS

RuntimeCmd: table_add m_table m_action 01:00:00:00:00:00&&&01:00:00:00:00:00 => 1 0
Adding entry to ternary match table m_table
match key: TERNARY-01:00:00:00:00:00 &&& 01:00:00:00:00:00
action: m_action
runtime data: 00:00:00:05
SUCCESS
entry has been added with handle 1

Value and mask for ternary
matching. No spaces around

“&&&”

Entry priority

“=>” separates the
key from the action

data

CS344 Stanford

SimpleSumeSwitch Support in bmv2

• No extern support

• No data-plane broadcasting

• No digest_data support

• Different CLI commands from P4àNetFPGA

CS344 Stanford

Basic Exercise

54

• Basic Router Functionality:
◦ Parse Ethernet and IPv4 headers
◦ Find destination in IPv4 routing table
◦ Update source / destination MAC addresses
◦ Decrement time-to-live (TTL) field
◦ Update IPv4 checksum
◦ Set egress port
◦ Deparse header back into packet

• Starter code in basic.p4
• Static control-plane

CS344 Stanford

Basic Exercise

55

s1

h1
(10.0.1.1)

s3

s2

h2
(10.0.2.2)

h3
(10.0.3.3)

nf0 nf1
nf2

nf0nf1

nf2

nf0

nf1 nf2

CS344 Stanford

FIN

56

